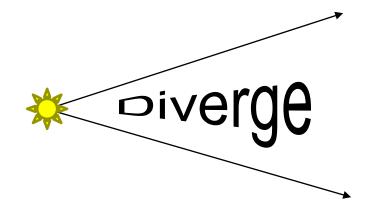
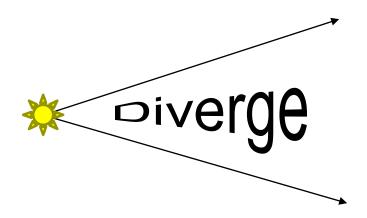

Basic Optics, Chapter 2

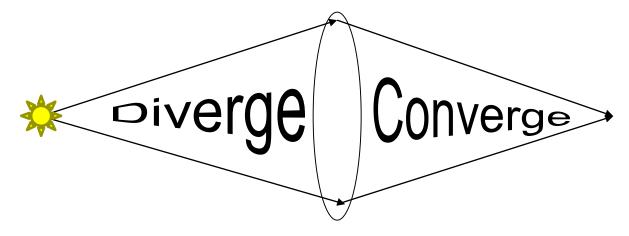
(From the last slide-set)

- The term vergence describes what light rays are doing in relation to each other
- With respect to a given point, light rays can:
 - spread out (diverge)
 - come together (converge)
 - run parallel (vergence = zero)


(From the last slide-set)


- Vergence is measured in diopters (D)
 - Dioptric power is defined as the reciprocal of the distance (in meters) to the point where light rays would intersect

4


 Important point: Light rays emanating from any point are always divergent!

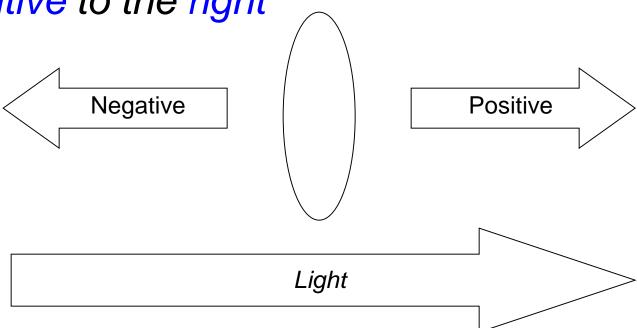
- 5
- Important point: Light rays emanating from any point are always divergent!
- For the most part, converging rays rarely appear in the 'natural world'

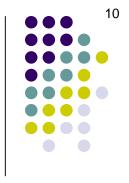
- 6
- Important point: Light rays emanating from any point are always divergent!
- For the most part, converging rays rarely appear in the 'natural world'
- Convergence requires a refracting surface,
 e.g., a lens*

Take note of two conventions used in vergence problems:

Take note of two conventions used in vergence problems:

1) Light always moves left to right

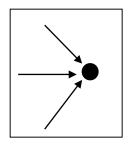



Light

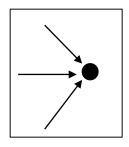
9

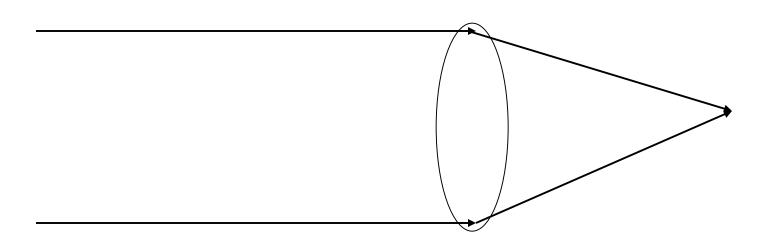
Take note of two conventions used in vergence problems:

- 1) Light always moves left to right
- 2) Distances are negative to the left of the lens, positive to the right



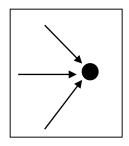
- There are two basic types of spherical lenses:
 - Plus
 - Minus

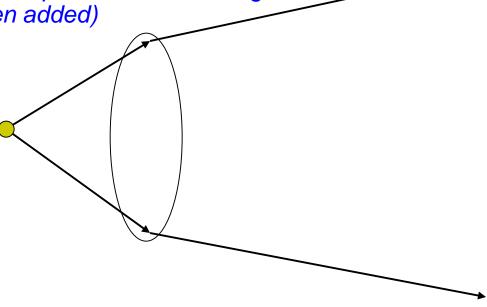

11


• Plus lens: induces convergence

12

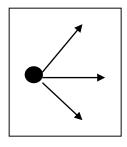
• Plus lens: induces convergence



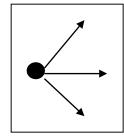

In this example, a plus lens causes previously parallel rays to converge to a point

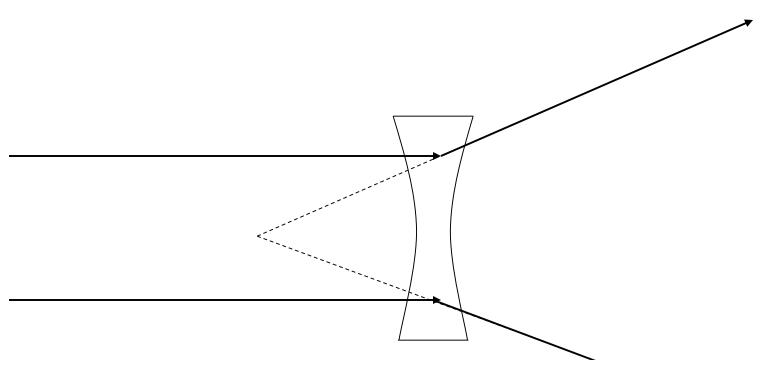
13

Plus lens: induces convergence



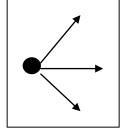
Rays exiting this plus lens are diverging; however, they are **less** divergent than they were prior to encountering it (i.e., convergence has been added)


14


• Minus lens: induces divergence

15

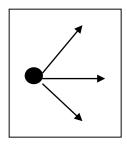
• Minus lens: induces divergence



In this example, a minus lens causes previously parallel rays to diverge from a point

16

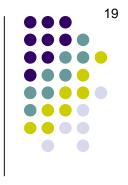
• Minus lens: induces divergence

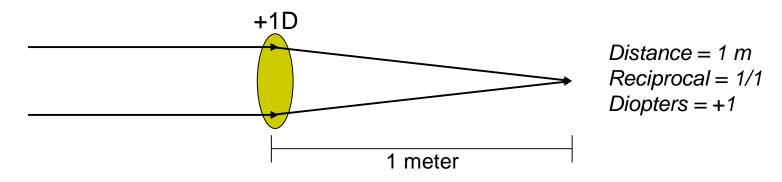


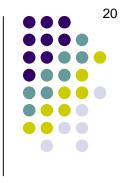
Of course, the light isn't *really* diverging from this point; that's why the rays were extended with dashed lines. In fact, as we will soon see, this location is actually a *focal point* for this lens. A very important image is being formed at this location, although it's not the kind of image that can be projected onto a screen. More later!

In this example, a minus lens causes previously parallel rays to diverge from a point

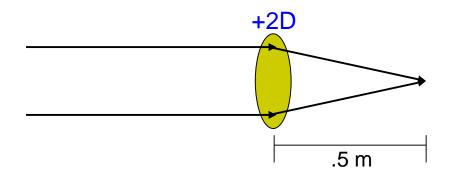
17


• Minus lens: induces divergence

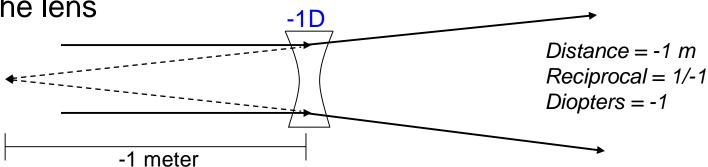

Rays exiting this minus lens are converging; however, they are less convergent than they were prior to encountering it (i.e., divergence has been added)



- The ability of a lens to induce vergence is expressed in diopters
 - Dioptric power of a lens: The reciprocal of the distance (in meters) to the point where incoming parallel light rays would intersect after passing through the lens



- The ability of a lens to induce vergence is expressed in diopters
 - Dioptric power of a lens: The reciprocal of the distance (in meters) to the point where incoming parallel light rays would intersect after passing through the lens
 - A +1D lens will focus parallel rays at 1m


- The ability of a lens to induce vergence is expressed in diopters
 - Dioptric power of a lens: The reciprocal of the distance (in meters) to the point where incoming parallel light rays would intersect after passing through the lens
 - A +2D lens will focus parallel rays at 1/2 m

Distance = .5 mReciprocal = 1/.5Diopters = +2

- The ability of a lens to induce vergence is expressed in diopters
 - Dioptric power of a lens: The reciprocal of the distance (in meters) to the point where incoming parallel light rays would intersect after passing through the lens
 - A -1D lens will 'focus' parallel rays at 1 m to the left of the lens

